Remarks on Iterated Cubic Maps

نویسنده

  • John W. Milnor
چکیده

1. The Parameter Space for Cubic Maps 2. Real Cubic Maps as Real Dynamical Systems 3. Complex Cubics: The Connectedness Locus 4. Hyperbolic Components Appendix A. Normal Forms and Curves in Parameter Space Appendix B. Centers of Some Hyperbolic Components Appendix C. Comments on the Figures References This article discusses the dynamics of iterated cubic maps from the real or complex line to itself and will describe the geography of the parameter space for such maps. It is a rough survey with few precise statements or proofs and depends strongly on work by Douady, Hubbard, Branner and Rees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Superior Julia Sets

Bodil Branner and John Hubbard produced the first extensive study of iterated complex maps for cubic polynomials in Picard orbit [Acta Math., 160(3-4):1988, 143-206]. Since then few researchers worked on Julia sets for cubic polynomials. In 2004, Rani and Kumar [J. Korea Soc. Math. Educ. Ser. D; Research in Math. Educ., 8(4):2004, 261-277] studied cubic polynomials in superior orbit and gave im...

متن کامل

Some Remarks on Iterated Maps of Natural Numbers

(right) M Ram Murty is also a Fellow of the Royal Society of Canada as well as Fellow the Indian Science Academy. He is currently Queen’s Research Chair in mathematics and philosophy at Queen’s University, Canada. The iterates of maps f : N → N given as a function of the digits of the number written in a fixed base b are dealt with here. For such maps, the iterates end up in a finite collection...

متن کامل

Cycling Chaos in One-Dimensional Coupled Iterated Maps

Cycling behavior involving steady-states and periodic solutions is known to be a generic feature of continuous dynamical systems with symmetry. Using Chua’s circuit equations and Lorenz equations, Dellnitz et al. [1995] showed that “cycling chaos”, in which solution trajectories cycle around symmetrically related chaotic sets, can also be found generically in coupled cell systems of differentia...

متن کامل

Cubic Spline Coalescence Fractal Interpolation through Moments

This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated...

متن کامل

Human Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics

Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1992